Методы и способы окраски: современное окрасочное оборудование

15 ноября 2010 г.
Методы и способы окраски: современное окрасочное оборудование

Сейчас известно очень много способов нанесения лакокрасочных материалов на поверхность, также существует большое количество красок и разнообразных защитных покрытий. Со временем разрабатываются все более новые и усовершенствованные покрытия и приборы для их нанесения.

Данная статья содержит информацию об окрасочном оборудовании и методах нанесения материалов на поверхность.

Следует обратить внимание на следующие показатели окрасочных установок:

  • Качество, или класс покрытия по ГОСТу
  • Эффективность, или коэффициент переноса, - количество лакокрасочного материала, которое было перенесено на окрашиваемую поверхность в соотношении с общим распыленным объёмом, в процентах.
  • Скорость нанесения материала за единицу времени (кв.м/мин, гр/мин)
  • Стоимость оборудования.
  • Сложность в использовании оборудования.

1. Пневматическое распыление

  • Конвенциональная (стандартная) система
  • Система НА
  • Система HVLP
  • Система Geo
  • Турбо-HVLP

2. Безвоздушное распыление (Airless)
3. Смешанное распыление (Mist-Less)

1. Пневматическое распыление

Пневматическое распыление основывается на последовательном дроблении струи покрывающего материала при помощи воздушного потока. При этом скорость движения воздуха во много раз превосходит скорость истечения краски из сопла. Материальные и воздушные сопла в большинстве случаев, расположены соосно, и используются совместно.

1 a) Давление воздуха в конвенциональных, или стандартных системах на выходе в распыляющей головке составляет 3-6 бар, что обеспечивает достаточно большую скорость воздушного потока. Факел окрасочного аэрозоля составляют капли различного диаметра (от 5 мкм до 100 мкм), которые в вихревом потоке воздуха движутся с разной скоростью. На окрашиваемой поверхности остаются лишь 30-40% частиц аэрозоля, обладающие оптимальными размерами и скоростью.

Около 50%-60% мелких частиц, быстро теряют скорость, не достигают поверхности, из них образуется «туман», который сдувается потоком воздуха краскопульта.

Крупные капли с высокой скоростью движения составляют 5-10% аэрозоля. Они при ударе об окрашиваемую поверхность отскакивают, что образует в плёнке ЛКМ дефекты, которые сдуваются под действием настилаемого потока воздуха на соседние участки поверхности. Недостаточная скорость крупных частиц способствует тому, что сила их удара о плоскость мала и не может преодолеть силы поверхностного натяжения капли материала, а это приводит к тому, что толщина слоя краски получается неравномерной.

Следовательно, коэффициент переноса ЛКМ у стандартных систем при высокой скорости работы и удовлетворительном качестве получаемого покрытия, не превышает 40%.

Оборудование в своем «классическом» виде в настоящее время используется все реже, однако за последние годы разработаны «промежуточные» варианты, так называемая технология HA (High Atomisation).

1 б) Система HA (High Atomisation), TransTech, RP и другие окрасочные установки, используют на выходе распыляющей головки давление 1,2-1,4 бар, и большой объём воздуха (до 600 л) в распыляющей головке. Это дало возможность резко поднять эффективность переноса, уменьшить «туманообразование», и при этом сохранить достаточно большую скорость и высокое качество нанесения лакокрасочного материала. Однако, существует одно ограничение: данная технология, по сравнению со стандартной или HVLP не столь "универсальна", а точнее, она работает с меньшим числом материалов. Но все же, краскопульты НА применяются все чаще с автомобильными финиш-красками и лаками, а также базами «перламутр» и «металлик».

Технология работы с данным окрасочным оборудованием такая же, что и с конвенциональным, что существенно облегчает и ускоряет процесс перехода на эти краскораспылители.

1 в) Экологов США в 1988 году обеспокоило высокое содержание загрязняющих веществ в курортном воздухе Калифорнии. В результате этого был принят Закон Штата Калифорния за номером 1151, который помимо прочего, содержал запрет на превышение паров сольвента и окрасочной пыли в воздухе и требующего использование технологий HVLP в процессе производства работ по окраске. Действие данного закона распространилось на всю территорию США, чему в дальнейшем последовали и страны Западной Европы.

Устройство современных краскораспылителей дает возможность преобразовать сравнительно небольшой поток сжатого до 2-3 бар воздуха на входе, в больший (600-800 л/мин) объём и меньшее давление - 0,7 бар, на выходе распыляющей головки.

В этом и заключается принцип HVLP (Большой Объём-Низкое Давление) при чем скорость истечения воздуха из сопла очень низкая, отсутствует турбуленция, что способствует созданию идеальных условий для образования однородного состава (30-60 мкм) и скорости движения капель аэрозоля и обеспечивает равномерный «мягкий» перенос 65%-75% ЛКМ на окрашиваемую поверхность, одновременно резко снижая «туманообразование».

Если «настил» воздушного конуса стабилен и без завихрений, то он способствует получению высококачественного покрытия при высокой скорости нанесения на поверхность материала.

Высокое качество, экологичность, простота в использовании и обслуживании, низкая себестоимость — все это обусловило широкое применение данной технологии в авиакосмической, автомобильной, а также, мебельной отраслях, работах по строительству и отделке и в промышленном производстве.

1 г) Компанией Walcom в 1992 году был разработан и запатентован метод GEO – технология "двойного распыления", где используется особая микрокамера дополнительного смешивания воздуха с ЛКМ. При этом происходит деление на два последовательных этапа, в результате чего образуются оптимальные размеры частиц аэрозоля (30-60 мкм), что гарантирует высокое качество, и резко, на 67%, снижает "туманообразование". К тому же, работая при тех же параметрах давления (менее 0,7 бар) в распыляющей головке, как и система HVLP, краскораспылители GEO имеют меньший расход воздуха на входе, около 220л/мин, а это позволяет существенно сэкономить ресурсы.

Окрасочные устройства системы GEO наносят на поверхность покрытия с первоклассным качеством, они широко применяются в производстве мебели и автоделе.

1 д) Система турбо HVLP заключается в использовании воздушного потока ещё большего объема (800 л/мин), при избыточном давлении не выше 0,5 бар, что позволяет полностью избавиться от минусов конвенционального распыления.

Низкая скорость большого потока воздуха позволяет равномерно и мягко атомизировать материал, плавно перенести его на поверхность и прижать, препятствуя обратному "отбою" краски, одновременно, тщательно прокрасить поверхности сложной формы и так называемые "мертвые" зоны.

Большим плюсом данного метода является то, что отсутствует водоконденсат и пары масла в воздухе, который получается при помощи турбины-нагнетателя.

Но на ряду с достоинствами, есть и определенные недостатки: низкая скорость нанесения покрытия и высокий нагрев воздуха в результате его трения о лопатки турбины, а это может способствовать "схватыванию" материала в дюзе в процессе работы.

Технология Турбо HVLP имеет еще одно название: "пневматическая кисть", которая применяется там, где ведется работа с материалами различной вязкости: от 15 до 160 сек, и получать покрытие наивысшего качества при коэффициенте переноса до 80%-85%.

2. Безвоздушное распыление (AIRLESS)

Безвоздушным распылением (AIRLESS) называется метод распыления материала без участия воздуха, то есть, дробление краски осуществляется вследствие продавливания её под высоким гидравлическим давлением (40 - 500 бар) с большой скоростью через сопло специальной формы. Струя краски, при трении об воздух, распадается на капли разного размера, вместе с тем понижается скорость, и краска оседает на окрашиваемой поверхности.

Данный метод весьма специфичен, так как не позволяет получить высококлассное покрытие из-за неоднородности частиц окрасочного аэрозоля. Помимо этого, в процессе работы строго заданы и не могут регулироваться размер, форма факела и расход материала.

Вместе с этим есть и свои плюсы:

  • возможно нанесение материала любой вязкости;
  • скорость работы довольно высока – количество распыляемого материала в минуту может достигать нескольких десятков литров.

Исходя из параметров работы данного оборудования, оно широко применяется в строительно-отделочных и фасадных работах, защите металлоконструкций от коррозии, гидроизоляции, судостроении, нанесении дорожной разметки и так далее.

3. Смешанное распыление (Mist-Less)

Технология, объединяющая в себе свойства безвоздушного и воздушного распыления, получила название комбинированного или смешанного распыления. Еще этот метод называют безвоздушным распылением в воздушном конусе, безвоздушным распылением с воздушной поддержкой.

Метод заключается в следующем: окрасочный аэрозоль полученный безвоздушным распылением, тщательно дробится воздушным потоком, который подается непосредственно в факел. Вместе с этим, в специальных воздуховодах, образуется воздушный конус, который формирует факел и без существенных потерь краски, доставляет ее к поверхности.

Это позволяет успешно применять данный метод распыления в процессе поточного производства мебели, а также при промышленной финиш-окраске, окраске строительных, сельскохозяйственных машин, станков и оборудования, в аэрокосмической области.

 

В заключение данной статьи можно привести сводную таблицу характеристик вышеуказанных методов окрашивания:

Показатель

Пневматическое

Airless

Mistless

Стандарт

GEO

НА

HVLP

Турбо HVLP

Качество

+

++++

+++

+++

++++

+

+++

Эффективность

+

++++

++++

+++

+++++

++

+++

Скорость

+++

++

+++

+++

+

++++

++++

Стоимость

+

++

++

++

+++

++++

+++++

Сложность

+

+++

++

++

+++

+

+++

Окупаемость

+

+++

+++

+++

++++

++

++

ООО "ПРОМАТЕХ" осуществляет прямые поставки потребителям высококачественного профессионального окрасочного оборудования Walcom, Walmec, Larius, Asturomec, Contracor. Полный перечень поставляемого оборудования Вы сможете найти в разделе "Оборудование и приборы контроля".

Другие публикации

Ремонт и восстановление бетонных сооружений
7 июня 2012 г.
Ремонт и восстановление бетонных сооружений
Пресса о нас. Публикация в региональном издании "Строительство и Недвижимость в Воронежском регионе", №6, 2012г.

Начиная с конца 19-го столетия железобетон стал наиболее широко применяемым строительным материалом. Сегодня новые технологии, связанные с добавками к бетону, позволяют архитекторам и инженерам проектировать конструкции с большими функциональными возможностями, долговечностью и эстетической привлекательностью.

Защита от коррозии металлических и железобетонных конструкций мостов
1 июля 2012 г.
Защита от коррозии металлических и железобетонных конструкций мостов
За последние десятилетия в транспортном строительстве использование стальных конструкций стало преимущественным, при этом сохраняется использование несущих железобетонных колонн и железобетонные автомобильные мосты. Современные технологии производства конструкционных сталей, железобетона, новые решения в проектировании транспортных сооружений (мостов, барьерных ограждений, вспомогательных конструкций и сооружений) позволяют устанавливать сроки их службы в десятки лет – 40 … 100 лет. Поэтому вопросы использования качественных защитных покрытий и своевременных ремонтно-восстановительных работ является предметом постоянного обсуждения в данной отрасли.
Огнезащитные составы для металлических конструкций
3 марта 2012 г.
Огнезащитные составы для металлических конструкций
 
Под влиянием высоких температур  металлические конструкции теряют свою несущую способность, что приводит к потере целостности конструкции и в конечном итоге – к разрушению. Для того чтобы увеличить предел сопротивляемости огневому и температурному воздействию прибегают к различного типа пассивной огнезащиты. В зависимости от применяемого типа огнезащитных материалов возможно увеличить предел огнестойкости металлических конструкций до  4-х часов (R240).